Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Equations with Critical Exponent

where As3 is the Laplace-Beltrami operator on B' . Let 0* C (0, 7r) be the radius o r B ' , i.e., the geodesic distance of the North pole to OBq The values 0 < 0* < 7r/2 correspond to a spherical cap contained in the Northern hemisphere, 0* -7r/2 corresponds to B ~ being the Northern hemisphere and the values rr/2 < 0* < ~c correspond to a spherical cap which covers the Northern hemisphere. Fin...

متن کامل

Critical exponent of chaotic transients in nonlinear dynamical systems.

The average lifetime of a chaotic transient versus a system parameter is studied for the case wherein a chaotic attractor is converted into a chaotic transient upon collision with its basin boundary (a crisis). Typically the a~erage lifetime T depends upon the system parameter p via T —~p —p, ~ &, where p, denotes the value of p at the crisis and we caII y the critical exponent of the chaotic t...

متن کامل

The Critical Exponent of Doubly Singular Parabolic Equations

In this paper we study the Cauchy problem of doubly singular parabolic equations ut = div ∇u σ ∇um + t x u with non-negative initial data. Here −1 < σ ≤ 0, m > max 0 1 − σ − σ + 2 /N satisfying 0 < σ +m ≤ 1, p > 1, and s ≥ 0. We prove that if θ > max − σ + 2 , 1 + s N 1 − σ − m − σ + 2 , then pc = σ +m + σ +m− 1 s + σ + 2 1+ s + θ /N > 1 is the critical exponent; i.e, if 1 < p ≤ pc then every n...

متن کامل

Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

We study the balance between the effect of spatial inhomogeneity of the potential in the dissipative term and the focusing nonlinearity. Sharp critical exponent results will be presented in the case of slow decaying potential.

متن کامل

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2015

ISSN: 0219-1997,1793-6683

DOI: 10.1142/s0219199715500054